1,108 research outputs found

    A systematic genome-wide association analysis for inflammatory bowel diseases (IBD)

    Get PDF
    Two independent and hypothesis-free genome-wide association studies were carried out to find novel susceptibility genes for Crohn’s disease (CD), which is a chronic inflammatory disorder of the bowel. In a first sequence-based and “direct” scan, approximately 20,000 nonsynonymous SNPs, which result in a change in protein sequence, were typed. The second “indirect” map-based scan comprised about 100,000 evenly distributed SNPs

    GMFilter and SXTestPlate: software tools for improving the SNPlex™ genotyping system

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Genotyping of single-nucleotide polymorphisms (SNPs) is a fundamental technology in modern genetics. The SNPlex™ mid-throughput genotyping system (Applied Biosystems, Foster City, CA, USA) enables the multiplexed genotyping of up to 48 SNPs simultaneously in a single DNA sample. The high level of automation and the large amount of data produced in a high-throughput laboratory require advanced software tools for quality control and workflow management.</p> <p>Results</p> <p>We have developed two programs, which address two main aspects of quality control in a SNPlex™ genotyping environment: GMFilter improves the analysis of SNPlex™ plates by removing wells with a low overall signal intensity. It enables scientists to automatically process the raw data in a standardized way before analyzing a plate with the proprietary GeneMapper software from Applied Biosystems. SXTestPlate examines the genotype concordance of a SNPlex™ test plate, which was typed with a control SNP set. This program allows for regular quality control checks of a SNPlex™ genotyping platform. It is compatible to other genotyping methods as well.</p> <p>Conclusion</p> <p>GMFilter and SXTestPlate provide a valuable tool set for laboratories engaged in genotyping based on the SNPlex™ system. The programs enhance the analysis of SNPlex™ plates with the GeneMapper software and enable scientists to evaluate the performance of their genotyping platform.</p

    SNPexp - A web tool for calculating and visualizing correlation between HapMap genotypes and gene expression levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression levels for 47294 transcripts in lymphoblastoid cell lines from all 270 HapMap phase II individuals, and genotypes (both HapMap phase II and III) of 3.96 million single nucleotide polymorphisms (SNPs) in the same individuals are publicly available. We aimed to generate a user-friendly web based tool for visualization of the correlation between SNP genotypes within a specified genomic region and a gene of interest, which is also well-known as an expression quantitative trait locus (eQTL) analysis.</p> <p>Results</p> <p>SNPexp is implemented as a server-side script, and publicly available on this website: <url>http://tinyurl.com/snpexp</url>. Correlation between genotype and transcript expression levels are calculated by performing linear regression and the Wald test as implemented in PLINK and visualized using the UCSC Genome Browser. Validation of SNPexp using previously published eQTLs yielded comparable results.</p> <p>Conclusions</p> <p>SNPexp provides a convenient and platform-independent way to calculate and visualize the correlation between HapMap genotypes within a specified genetic region anywhere in the genome and gene expression levels. This allows for investigation of both cis and trans effects. The web interface and utilization of publicly available and widely used software resources makes it an attractive supplement to more advanced bioinformatic tools. For the advanced user the program can be used on a local computer on custom datasets.</p

    Haplotype-sharing analysis for alcohol dependence based on quantitative traits and the Mantel statistic

    Get PDF
    Haplotype-based methods have become increasingly popular in the last decade because shared lengths in haplotypes can be used for disease localization. In this contribution, we propose a novel linkage-based haplotype-sharing approach for quantitative traits based on the class of Mantel statistics which is closely related to the weighted pair-wise correlation statistic. Because these statistics are known to be liberal, we propose a permutation test to evaluate significance. We applied the Mantel statistic to the autosomal data from the genome-wide scan of the Collaborative Study on the Genetics of Alcoholism with the Affymetrix Genotype 10 K array that was provided for the Genetic Analysis Workshop 14. Four regions on chromosome 4, 8, 16, and 20 showed p-values less than 0.005 with a minimum p-value of < 0.0001 on chromosome 16 (tsc0520638 at 72.8 cM). Three of these four regions located on chromosome 4, 16, and 20 have been reported previously in the Genetic Analysis Workshop 11

    Microrna response of primary human macrophages to Arcobacter Butzleri infection

    Get PDF
    The role of microRNAs (miRNAs) in infectious diseases is becoming more and more apparent, and the use of miRNAs as a diagnostic tool and their therapeutic application has become the major focus of investigation. The aim of this study was to identify miRNAs involved in the immune signaling of macrophages in response to Arcobacter (A.) butzleri infection, an emerging foodborne pathogen causing gastroenteritis. Therefore, primary human macrophages were isolated and infected, and miRNA expression was studied by means of RNAseq. Analysis of the data revealed the expression of several miRNAs, which were previously associated with bacterial infections such as miR-155, miR-125, and miR-212. They were shown to play a key role in Toll-like receptor signaling where they act as fine-tuners to establish a balanced immune response. In addition, miRNAs which have yet not been identified during bacterial infections such as miR-3613, miR-2116, miR-671, miR-30d, and miR-629 were differentially regulated in A. butzleri-infected cells. Targets of these miRNAs accumulated in pathways such as apoptosis and endocytosis — processes that might be involved in A. butzleri pathogenesis. Our study contributes new findings about the interaction of A. butzleri with human innate immune cells helping to understand underlying regulatory mechanisms in macrophages during infection

    Current Developments of Clinical Sequencing and the Clinical Utility of Polygenic Risk Scores in Inflammatory Diseases

    Get PDF
    In this mini-review, we highlight selected research by the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence "Precision Medicine in Chronic Inflammation" focusing on clinical sequencing and the clinical utility of polygenic risk scores as well as its implication on precision medicine in the field of the inflammatory diseases inflammatory bowel disease, atopic dermatitis and coronary artery disease. Additionally, we highlight current developments and discuss challenges to be faced in the future. Exemplary, we point to residual challenges in detecting disease-relevant variants resulting from difficulties in the interpretation of candidate variants and their potential interactions. While polygenic risk scores represent promising tools for the stratification of patient groups, currently, polygenic risk scores are not accurate enough for clinical setting. Precision medicine, incorporating additional data from genomics, transcriptomics and proteomics experiments, may enable the identification of distinct disease pathogeneses. In the future, data-intensive biomedical innovation will hopefully lead to improved patient stratification for personalized medicine

    PTGER4 expression-modulating polymorphisms in the 5p13.1 region predispose to Crohn's disease and affect NF-ÎşB and XBP1 binding sites.

    Get PDF
    Genome-wide association studies identified a PTGER4 expression-modulating region on chromosome 5p13.1 as Crohn's disease (CD) susceptibility region. The study aim was to test this association in a large cohort of patients with inflammatory bowel disease (IBD) and to elucidate genotypic and phenotypic interactions with other IBD genes. A total of 7073 patients and controls were genotyped: 844 CD and 471 patients with ulcerative colitis and 1488 controls were analyzed for the single nucleotide polymorphisms (SNPs) rs4495224 and rs7720838 on chromosome 5p13.1. The study included two replication cohorts of North American (CD: n = 684; controls: n = 1440) and of German origin (CD: n = 1098; controls: n = 1048). Genotype-phenotype, epistasis and transcription factor binding analyses were performed. In the discovery cohort, an association of rs4495224 (p = 4.10×10⁻⁵; 0.76 [0.67-0.87]) and of rs7720838 (p = 6.91×10⁻⁴; 0.81 [0.71-0.91]) with susceptibility to CD was demonstrated. These associations were confirmed in both replication cohorts. In silico analysis predicted rs4495224 and rs7720838 as essential parts of binding sites for the transcription factors NF-κB and XBP1 with higher binding scores for carriers of the CD risk alleles, providing an explanation of how these SNPs might contribute to increased PTGER4 expression. There was no association of the PTGER4 SNPs with IBD phenotypes. Epistasis detected between 5p13.1 and ATG16L1 for CD susceptibility in the discovery cohort (p = 5.99×10⁻⁷ for rs7720838 and rs2241880) could not be replicated in both replication cohorts arguing against a major role of this gene-gene interaction in the susceptibility to CD. We confirmed 5p13.1 as a major CD susceptibility locus and demonstrate by in silico analysis rs4495224 and rs7720838 as part of binding sites for NF-κB and XBP1. Further functional studies are necessary to confirm the results of our in silico analysis and to analyze if changes in PTGER4 expression modulate CD susceptibility

    On giant shoulders: How a seamount affects the microbial community composition of seawater and sponges

    Get PDF
    Seamounts represent ideal systems to study the influence and interdependency of environmental gradients at a single geographic location. These topographic features represent a prominent habitat for various forms of life, including microbiota and macrobiota, spanning benthic as well as pelagic organisms. While it is known that seamounts are globally abundant structures, it still remains unclear how and to which extent the complexity of the sea floor is intertwined with the local oceanographic mosaic, biogeochemistry, and microbiology of a seamount ecosystem. Along these lines, the present study aimed to explore whether and to what extent seamounts can have an imprint on the microbial community composition of seawater and of sessile benthic invertebrates, sponges. For our high-resolution sampling approach of microbial diversity (16S rRNA gene amplicon sequencing) along with measurements of inorganic nutrients and other biogeochemical parameters, we focused on the Schulz Bank seamount ecosystem, a sponge ground ecosystem which is located on the Arctic Mid-Ocean Ridge. Seawater samples were collected at two sampling depths (mid-water, MW, and near-bed water, BW) from a total of 19 sampling sites. With a clustering approach we defined microbial microhabitats within the pelagic realm at Schulz Bank, which were mapped onto the seamount's topography and related to various environmental parameters (such as suspended particulate matter, SPM; dissolved inorganic carbon, DIC; silicate, SiO−4; phosphate, PO3−4; ammonia, NH+4; nitrate, NO2−3; nitrite, NO−2; depth; and dissolved oxygen, O2). The results of our study reveal a “seamount effect” (sensu stricto) on the microbial mid-water pelagic community at least 200 m above the sea floor. Further, we observed a strong spatial heterogeneity in the pelagic microbial landscape across the seamount, with planktonic microbial communities reflecting oscillatory and circulatory water movements, as well as processes of bentho-pelagic coupling. Depth, NO2−3, SiO−4, and O2 concentrations differed significantly between the determined pelagic microbial clusters close to the sea floor (BW), suggesting that these parameters were presumably linked to changes in microbial community structures. Secondly, we assessed the associated microbial community compositions of three sponge species along a depth gradient of the seamount. While sponge-associated microbial communities were found to be mainly species-specific, we also detected significant intra-specific differences between individuals, depending on the pelagic near-bed cluster they originated from. The variable microbial phyla (i.e. phyla which showed significant differences across varying depth, NO2−3, SiO−4, O2 concentrations, and different from local seawater communities) were distinct for every sponge species when considering average abundances per species. Variable microbial phyla included representatives of both those taxa traditionally counted for the variable community fraction and taxa counted traditionally for the core community fraction. Microbial co-occurrence patterns for the three examined sponge species Geodia hentscheli, Lissodendoryx complicata, and Schaudinnia rosea were distinct from each other. Over all, this study shows that topographic structures such as the Schulz Bank seamount can have an imprint (seamount effect sensu lato) on both the microbial community composition of seawater and sessile benthic invertebrates such as sponges by an interplay between the geology, physical oceanography, biogeochemistry, and microbiology of seamounts

    NKX2-3 (NK2 homeobox 3)

    Get PDF
    NKX2-3 gene is a member of the homeobox, NKX family. The gene encodes a homeodomain-containing transcription factor. GO (gene ontology) annotations related to this gene include sequence-specific DNA binding and gene-specific transcription factor activity. NKX2-3 is essential for normal development and functions of the small intestine and spleen of embryonic and adult mice. Disruption of Nkx2-3 in mice results in postnatal lethality and abnormal development of the small intestine and the spleen. Villus formation in the small intestine appears considerably delayed in Nkx2-3(null) fetuses due to reduced proliferation of the epithelium, while massively increased growth of crypt cells follows in surviving adults. A complex intestinal malabsorption phenotype and striking abnormalities of gut-associated lymphoid tissue and spleen suggest deranged leukocyte homing. RT-PCR and immunohistochemistry revealed that NKX2-3 controls regional expression of leukocyte homing coreceptor mucosal addressin cell adhesion molecule-1 (MAdCAM-1) in specialized endothelial cells of the viscera. This indicates a potential role for NXK2-3 in establishing the developmental and positional cues in endothelia that regulate leukocyte homing through local control of cellular adhesion. Studies of disease association indicated that NKX2-3 is associated with IBD (both Crohn's disease and ulcerative colitis), intestinal fibrosis, colon rectal cancer, and dental caries
    • …
    corecore